
－Protection degree（front）：IP50
－RS485 serial output（on request）（MODBUS－RTU），iFIX SCADA compatibility
－Dupline communication capability（DP option）
－Application adaptable display and programming procedure（Easyprog function）
－Easy connections management
－Certified according to MID Directive，Annex＂B＂
＂Type examination＂relevant to active electrical energy meters（see Annex MI－003）．

Product Description

Three－phase energy analyzer with built－in configuration joystick and LCD data dis－ playing；particularly indicat－ ed for active and reactive energy metering and for cost allocation．Housing for DIN－ rail mounting with IP50 （front）protection degree． Direct connection up to 65A and by means of external current and potential trans－
formers．Moreover the meter can be provided with digital outputs that can be either for pulse proportional to the active and reactive energy being measured or for alarm outputs．In alter－ native the RS485 communi－ cation port and 3 digital inputs or Dupline port and 3 digital inputs are available as an option．
－Class 1 （kWh）according to EN62053－21
－Class B（kWh）according to EN50470－3
－Class 2 （kvarh）according to EN62053－23
－Accuracy ± 0.5 RDG（current／voltage）
－Energy analyzer
－Instantaneous variables readout： 4 DGT
－Energies／gas／water readout：7＋1 DGT
－System variables：VLL，VLN，Admd max，VA，VAdmd， VAdmd max，W，Wdmd，Wdmd max，var，PF，Hz， Phase－sequence．
－Single phase variables：VLL，VLN，A，VA，W，var，PF
－Energy measurements：total and partial kWh and kvarh or based on 4 different tariffs；single phase measurements
－Gas，cold water，hot water，kWh remote heating measurements
－Hour counter（6＋2 DGT）
－TRMS measurements of distorted sine waves （voltages／currents）
－Self power supply（AV0－AV2－AV9 inputs）
－Auxiliary power supply（AV5－AV6 inputs）
－ 3 digital inputs for tariff selection，DMD synch or gas／ water（hot－cold）and remote heating metering（on request）
－ 2 digital outputs for pulses or for alarms or as a mix of them（on request）
－Dimensions：4－DIN modules

Type Selection

| Range codes | | System | | | | Inputs／Outputs |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

（＊）as standard．（＊＊）on request．
$\left({ }^{\circ}\right)$ not available if the range code is＂AV2＂．$\left(^{\circ}\right)$ available if the range code is either＂AV2＂or＂AV5＂．

日煬國際事業股份有限公司
JD Auspice Co．，Ltd．

Input specifications

Rated inputs	System type：3－phase
Current type	Galvanic insulation by means of built－in CT＇s（AV5 and AV6 models）．By direct connec－ tion（AVO，AV2 and AV9）
Current range（by CT）	AV5 and AV6：1／5（10）A
Current range（direct）	AVO：10（65）A；AV2：10（65）A； AV9：10（65）A
Voltage	AV5： 400 VLL
Voltage	AVO：120VLN／208 VLL
	AV2：230／400 VLL
	AV9： 400 VLL
Voltage by VT／PT	AV6：120VLN／208 VLL
Accuracy（Display＋RS485）	lb ：see below，Un：see below
（＠25 ${ }^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, \mathrm{R} . \mathrm{H} . \leq 60 \%$ ， 48 to 62 Hz ）	
AV5 model	In：5A，Imax：10A；Un： 160 to 480VLN（ 277 to 830VLL）
AV6 model	In：5A，Imax：10A；Un： 40 to 144VLN（70 to 250VLL）
AVO model	lb：10A，Imax：65A；Un： 96 to 144 VLN （ 166 to 250 VLL ）
AV2 model	Ib：10A，Imax：65A，Un： 113 to 265VLN（196 to 460VLL）
AV9 model	Ib：10A，Imax：65A；Un： 184 to 276 VLN （ 318 to 480 VLL ）
Current	
AV5，AV6 models	From 0.002 In to 0.2 In ： $\pm(0.5 \%$ RDG +3 DGT） From 0.2 In to Imax ： $\pm(0.5 \%$ RDG＋1DGT）．
AV0，AV2，AV9 models	From 0.004 lb to 0.2 lb ： $\pm(0.5 \% \text { RDG }+3 \mathrm{DGT})$
	From 0.2 lb to Imax： $\pm(0.5 \% \text { RDG +1DGT). }$
Phase－neutral voltage	In the range Un：$\pm(0,5 \%$ RDG＋1DGT）
Phase－phase voltage	In the range Un：\pm（1\％RDG ＋1DGT）
Frequency	$\pm 0.1 \mathrm{~Hz}$（45 to 65 Hz ）
Active and Apparent power	$\pm(1 \% R D G+2 D G T)$
Power Factor	$\begin{aligned} & \pm[0.001+1 \%(1.000-\text { "PF } \\ & \text { RDG")] } \end{aligned}$
Reactive power	$\pm(2 \%$ RDG＋2DGT）
Active energy	Class 1 according to EN62053－21 and MID Annex MI－003 Class B according to EN50470－3
Reactive energy	Class 2 according to EN62053－23
AV5，AV6 models	In：5A，Imax：10A； $0.1 \mathrm{In}: 0.5 \mathrm{~A}$ ，
AV0，AV2，AV9 models	Start up current： 10 mA lb：10A，Imax：65A； 0.1 lb ：1．0A Start up current： 40 mA
Energy additional errors Influence quantities	According to EN62053－21， EN50470－3，EN62053－23
Temperature drift	$\leq 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Sampling rate	1600 samples／s＠ 50 Hz 1900 samples／s＠60Hz
Display refresh time	750 ms
Display	3 lines（ 1×8 DGT； 2×4 DGT）

Output specifications

Digital outputs	
Pulse type	
Number of outputs	Up to 2，independent． Programmable from 0.001 to $10.00 \mathrm{kWh} / \mathrm{kvarh}$ by pulse．
Type	Outputs connectable to the energy meters（kWh／kvarh）
Pulse duration	$\geq 100 \mathrm{~ms}<120 \mathrm{msec}(\mathrm{ON})$ ， $\geq 120 \mathrm{~ms}$（OFF），according to EN62053－31
Alarm type	
Number of outputs	Up to 2，independent
Alarm modes	Up alarm，down alarm（see the table＂List of the variables that can be connected to＂）
Set－point adjustment	From 0 to 100% of the display scale
Hysteresis	From 0 to full scale
On－time delay	0 to 255s
Output status	Selectable；normally de－energized or normally energized
Min．response time	$\leq 700 \mathrm{~ms}$ ，filter excluded， set－point on－time delay：＂0 s＂
Note	The 2 digital outputs can also work as a dual pulse output，dual alarm output， one pulse output and one alarm output．
Static output	
Purpose	For pulse output or alarm output
Signal	Von $1.2 \mathrm{VDC} / \mathrm{max} .100 \mathrm{~mA}$ Voff 30 VDC max．
Insulation	By means of optocuplers， 4000 VRMS output to measuring inputs， 4000 VRMS output to power supply input．
Relay output pow	
Purpose	For alarm output or pulse output
Type	Relay，SPST type AC 1－5A＠250VAC DC 12－5A＠24VDC AC 15－1．5A＠250VAC DC 13－1．5A＠24VDC
Insulation	4000 VRMS output to measuring input 4000 VRMS output to power supply input．

Pulse type
Number of outputs

Number of outputs
Alarm modes

Set－point adjustment
Hysteresis
delay

Min．response time

Note

tatic outpu

Signal
Insulation

utput

Type

Insulation

Note

	the relay outputs（＂AV0＂ and＂AV＂models with ＂R2＂option）work even if VL3 is missing（VL1，VL2 and neutral have to be available）（see table＂work－ ing mode notes＂）
RS485	Multidrop，bidirectional （static and dynamic Type variables）
2－wire	
Connections	Max．distance 1000m 247，selectable by means of the front joystick Addresses
Mrotocol	

Data（bidirectional） Dynamic（reading only）

Static（reading and writing）

Data format

Baud－rate
Driver input impedance

Insulation

Note：

The meters equipped with the relay outputs（＂AVO＂ ＂R2＂ R2＂option）work even if and neutral have to be available）（see table＂work－ ing mode notes＂）

Multidrop，bidirectional namic variables）

Max．distance 1000 m 247，selectable by means MODBUS／JBUS（RTU）

System and phase variables：see table＂List of variables．．．＂
All the configuration parameters．
1 start bit， 8 data bit，no parity， 1 stop bit 4800， $9600 \mathrm{bit} / \mathrm{s}$ $1 / 5$ unit load Maximum 160 transceivers on the same bus．
By means of optocouplers， 4000 VRMS output to measuring input， 4000 VRMS output to power supply input． The meters equipped with the communication port （＂AVO＂and＂AV9＂models with＂XS＂and＂IS＂options） work even if VL3 is missing （VL1，VL2 and neutral have to be available）（see table ＂working mode notes＂）

日煬國際事業股份有限公司
JD Auspice Co．，Ltd．

Dupline specifications

Counters	
Used Dupline function	Multiplexer for counter val－ ues
Number of counters	6 per instrument
	128 per network
Counter range	0．．． 99999999
Used channels	B to F
Multiplexer	B2 to B8
Reset	B1
Value	C1 to F8
Counter reset	Enable／disable function for all the counters
Available counters	kWh tot，－kWh tot， kvarh tot，－kvarh tot， kWh t1，kWh t2， kWh L1，kWh L2，kWh L3， counter dig．in． 1 ， counter dig．in．2， counter dig．in． 3 ， hour counter．
Analogue variables	
Used Dupline function	Multiplexer for analogue values
Number of variables	8 per instrument 80 per network
Dupline data format Full scale value	$31 / 2$ DGT BCD
	Selectable from 1.999 to 1999M
Used channels	depending on the number of variables
Multiplexer Value	A1 to A4
	G1 to H8（1st group of 16 variables）
	11 to J 8 （2 $2^{\text {nd }}$ group of 16 variables）
	K1 to L8（3 $3^{\text {th }}$ group of 16

Available variables	variables） M1 to N8（4 ${ }^{\text {th }}$ group of 16 variables） O1 to P8（ $5^{\text {th }}$ group of 16 variables） All，except for the＂max＂ variables
Synchro／Tariff input Used Dupline functions Used channels Working mode	Monostable（push－button） Realtime A5 Selectable： －none －Wdmd synchronization －total and partial energy meter（kWh，kvarh）man－ aged by time periods（t1－t2）．
Alarms Used Dupline function Used channells	Monostable（push－button） Selectable（A1 to P8）．No control that the selected channels are not used for counters or analog vari－ ables．
Number of alarms Alarm modes	2 per instrument Up alarm，down alarm（see the table＂List of the variables that can be connected to＂）
Set－point adjustment	From 0 to 100% of the dis－ play scale
Hysteresis On－time delay	From 0 to full scale 0 to 255s
Output status	Normally energised
Available variables	All，except for the＂max＂ variables

Digital input specifications

Number of inputs

Input frequency
Prescaler adjustment
Contact measuring voltage
Contact measuring current
Input impedance
Contact resistance
Working modes
（DP version excluded）

3
20 Hz max，duty cycle 50%
From 0.1 to $999.9 \mathrm{~m}^{3}$ or
kWh per pulse
5VDC＋／－5\％
10 mA max
680
$\leq 100 \Omega$ ，closed contact $\geq 500 \mathrm{k} \Omega$ ，open contact

Selectable：
－total and partial energy meters（kWh and kvarh） without digital inputs；
－total and partial energy meters（kWh and kvarh） managed by time periods （t1－t2－t3－t4），W dmd syn－ chronisation（the synchro－ nisation is made every time the tariff changes）and GAS（ m^{3} ）or WATER（hot－ cold m^{3} ）or remote heating （kWh）meters；
－total and partial energy meters（kWh and kvarh）

Working modes （DP version only）

Note

Insulation
managed by time periods （t1－t2），W dmd synchroni－ sation（the synchronisation is made independently from the tariff selection） and GAS $\left(\mathrm{m}^{3}\right)$ or WATER （hot－cold m ${ }^{3}$ ）or remote heating（kWh）meters； －total energy（kWh，kvarh） and GAS，WATER（hot－cold m^{3} ）and remote heating meters（3 choices only）．

Selectable：
－GAS（m）or WATER（hot－ cold m^{3} ）or remote heating （kWh）meters
The energy metering is only made by means of the analogue inputs．
By means of optocouplers， 4000 VRMS digital inputs to measuring inputs， 4000 VRMS digital inputs to power supply input．

日煬國際事業股份有限公司
JD Auspice Co．，Ltd．

Software functions

General specifications

Operating temperature	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $131^{\circ} \mathrm{F}$ ）（R．H．from 0 to 90% non－condensing＠ $40^{\circ} \mathrm{C}$ ） according to EN62053－21， EN50470－1 and EN62053－ 23
Storage temperature	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to 158° F）（R．H．$<90 \%$ non－ condensing＠ $40^{\circ} \mathrm{C}$ ） according to EN62053－21， EN50470－1 and EN62053－ 23
Installation category	Cat．III（IEC60664， EN60664）
Insulation（for 1 minute）	4000 VRMS between measuring inputs and power supply 4000 VRMS between power supply and RS485／digital output

Dielectric strength	4000 VRMS for 1 minute
Noise rejection CMRR	$100 \mathrm{~dB}, 48$ to 62 Hz
EMC	According to EN62052－11
Electrostatic discharges	15 kV air discharge
Immunity to irradiated	Test with current： $10 \mathrm{~V} / \mathrm{m}$ from 80 to 2000 MHz
Electromagnetic fields	Test without any current：
Burst	$30 \mathrm{~V} / \mathrm{m}$ from 80 to 2000 MHz On current and voltage measuring inputs circuit： 4 kV
Immunity to conducted disturbances	$10 \mathrm{~V} / \mathrm{m}$ from 150 KHz to 80 MHz
Surge	On current and voltage measuring inputs circuit： 4 kV ；on＂ L ＂auxiliary power supply input： 1 kV
Radio frequency suppression	According to CISPR 22

General specifications（cont．）

	Min．／Max．screws tightening torque： $0.4 \mathrm{Nm} / 0.8 \mathrm{Nm}$
Cable cross－section area AV5－AV6 models	Max． $1.5 \mathrm{~mm}^{2}$ Min．／Max．screws tightening torque： $0.4 \mathrm{Nm} / 0.8 \mathrm{Nm}$
Housing DIN Dimensions（WxHxD） Material	$71 \times 90 \times 64.5 \mathrm{~mm}$ Nylon PA66， self－extinguishing：UL 94 V－0 DIN－rail
Mounting	IP50 Protection degree Front Screw terminals
IP20	

Power supply specifications

Self supplied version	AV9－AV0 models ＂XX＂and＂O2＂options only：$-20 \%+15 \%$ ，48－ 62Hz．＂R2＂，＂XS＂and＂IS＂ options only：$-15 \%+10 \%$ ， $48-62 \mathrm{~Hz}$ ． AV2 model： ＂XX＂，＂O2＂，＂IS＂and＂DP＂		be performed the L1 and L2 voltage inputs have to be short circuited．The instrument provided with ＂O2＂option，working in a 3 －phase system with neu－ tral may work also if one or two phases are missing．
	options：$-15 \%+15 \%$ ，48－ 62 Hz ．In case of 3－phase system， 4 －wire connection： 113 to 265 V ．In case of 3－	Auxiliary power supply	AV5－AV6 modules： L： 18 to 60VAC／DC； D：115VAC／230VAC （ 48 to 62 Hz ）
Note	phase system， 3 －wire con－ nection： 196 to 460V． The instruments provided with＂IS＂and＂R2＂options work only if all the voltage inputs are connected（3－ phase and neutral）if a 1－ phase connection has to	Power consumption AV9－AV2－AV0 models AV9－AV2－AV0 models （IS and DP option only） AV5－AV6 models	$\begin{aligned} & \leq 20 \mathrm{VA} / 1 \mathrm{~W} \\ & \leq 12 \mathrm{VA} / 2 \mathrm{~W} \\ & \leq 2 \mathrm{VA} / 2 \mathrm{~W} \end{aligned}$

Working mode notes（only＂Self power supply＂version）

Output	Model	Note		
Open collector output	＂AVO＂and＂AV9＂models with＂O2＂option	The meter works even if up to two voltages＂phase to neutral＂are missing or if one voltage＂phase to phase＂is missing．		
Relay output	＂AV0＂and＂AV9＂models with＂R2＂option	The neutral wire has always to be available．The meter works even if＂Phase 3＂is missing but， mandatorily，both＂phase 1＂and＂Phase 2＂have to be available．		
RS485 port	＂AV0＂and＂AV9＂models with＂XS＂and＂IS＂			
options			\quad	＂AV2＂model with＂DP＂option
:---		The meter works even if up to two voltages＂phase		
:---				
to neutral＂are missing or if one voltage＂phase to				
phase＂is missing．				

Accuracy（According to EN50470－3 and EN62053－23）

kWh，accuracy（RDG）depending on the current

－Accuracy limits（Active energy） Start－up current： 10 mA （AV5－6），40mA（AV0－2－9）
kvarh，accuracy（RDG）depending on the current

－Accuracy limits（Reactive energy） Start－up current：10mA（AV5－6），40mA（AV0－2－9）

MID＂Annex MI－003＂compliance

Accuracy	0．9 Un $\leq U \leq 1.1 U n ;$ $0.98 \mathrm{fn} \leq \mathrm{f} \leq 1.02 \mathrm{fn}$ ； fn： 50 or 60 Hz ； $\cos \varphi: 0.5$ inductive to 0.8 capacitive． Class B	AV5－AV6 models	Class B I st：0．01A； I min：0．05A； I tr：0．25A； I ref：5A； I max：10A．
	I st：0．04A； I min：0．5A； Itr：1A；	Operating temperature	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $131^{\circ} \mathrm{F}$ ）（R．H．from 0 to 90% non－condensing＠ $40^{\circ} \mathrm{C}$ ）
	$\begin{aligned} & \text { I ref: 10A; } \\ & \text { I max: } 65 \mathrm{~A} . \end{aligned}$	EMC compliance	E2

Used calculation formulas

Phase variables

Instantaneous effective voltage
$V_{1 N}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{1 N}\right)_{i}^{2}}$
Instantaneous active power
$W_{1}=\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{1 N}\right)_{i} \cdot\left(A_{1}\right)_{i}$
Instantaneous power factor
$\cos \varphi_{1}=\frac{W_{1}}{V A_{1}}$
Instantaneous effective current
$A_{1}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(A_{1}\right)_{i}^{2}}$
Instantaneous apparent power
$V A_{1}=V_{1 N} \cdot A_{1}$
Instantaneous reactive power
$\operatorname{var}_{1}=\sqrt{\left(V A_{1}\right)^{2}-\left(W_{1}\right)^{2}}$

System variables

Equivalent three－phase voltage
$V_{\Sigma}=\frac{V_{1}+V_{2}+V_{3}}{3} \cdot \sqrt{3}$
Voltage asymmetry
$A S Y_{\mathrm{LL}}=\frac{\left(V_{\mathrm{LL} \text { max }}-V_{\mathrm{LL} \text { min }}\right)}{\mathrm{V}_{\mathrm{LL}} \Sigma}$
$A S Y_{L N}=\frac{\left(V_{L N \text { max }}-V_{L N \text { min }}\right)}{V_{L N} \Sigma}$
Three－phase reactive power
$\operatorname{var}_{\Sigma}=\left(\right.$ var $\left._{1}+\operatorname{var}_{2}+\operatorname{var}_{3}\right)$

Three－phase active power
$W_{\Sigma}=W_{1}+W_{2}+W_{3}$
Three－phase apparent power
$V A_{\Sigma}=\sqrt{W_{\Sigma}^{2}+\operatorname{var}_{\Sigma}^{2}}$

Three－phase power factor
$\cos \varphi_{\Sigma}=\frac{W_{\Sigma}}{V A_{\Sigma}}$

Energy metering
$k \operatorname{var} h i=\int_{t 1}^{t 2} Q i(t) d t \cong \Delta t \sum_{n 1}^{n 2} Q n j$
$k W h i=\int_{t 1}^{12} P i(t) d t \cong \Delta t \sum_{n 1}^{n 2} P n j$
Where：
i＝considered phase（L1，L2 or L3）
$\mathrm{P}=$ active power； $\mathrm{Q}=$ reactive power； $\mathrm{t}_{1}, \mathrm{t}_{2}=$ starting and ending time points of consumption recording； $\mathrm{n}=$ time unit；$\Delta \mathrm{t}=$ time interval between two successive power consumptions； $\mathrm{n}_{1}, \mathrm{n}_{2}=$ starting and ending discrete time points of consumption recording

List of the variables that can be connected to：

－RS485 communication port
－Alarm outputs（＂max＂variable＂，＂energies＂and＂hour counter＂excluded）
－Pulse outputs（only＂energies＂）
－Dupline bus

No	Variable	1－phase system	2－phase system	3－ph．4－wire balanced sys	3－ph．4－wire unbal．sys．	3 ph．3－wire bal．sys．	3 ph．3－wire unbal．sys．	Notes
1	V L－N sys	0	x	x	－	－	\＃	sys＝system
2	V L1	x	x	x	x	x	\＃	
3	V L2	0	X	X	x	x	\＃	
4	V L3	0	0	X	X	X	\＃	
5	V L－L sys	0	X	x	x	x	x	sys＝system
6	V L1－2	\＃	x	x	x	x	x	
7	V L2－3	\＃	0	x	x	x	x	
8	V L3－1	\＃	0	x	x	x	x	
9	A dmd max	\bigcirc	X	X	X	X	X	Highest＂dmd＂ current among the phases（1）（2）
10	A L1	x	x	X	x	x	x	
11	A L2	0	X	X	X	X	X	
12	A L3	0	0	x	x	x	x	
13	VA sys	x	x	x	x	x	x	sys＝system
14	VA sys dmd	X	x	x	X	x	x	sys＝system（1）
15	VA L1	x	x	x	x	x	\＃	
16	VA L2	0	X	x	x	X	\＃	
17	VA L3	0	0	x	x	x	\＃	
18	var sys	X	X	X	X	X	\＃	sys＝system
19	var L1	X	X	x	X	X	\＃	
20	var L2	0	x	X	x	x	\＃	
21	var L3	0	0	x	X	x	\＃	
22	W sys	x	X	X	X	X	x	sys＝system
23	W sys dmd	x	x	x	x	x	x	sys＝system（1）
24	W L1	x	x	x	x	x	\＃	
$\underline{25}$	W L2	0	x	x	x	x	\＃	
26	W L3	0	0	X	X	X	\＃	
$\underline{27}$	PF sys	x	x	x	X	x	x	
28	PF L1	x	x	x	x	x	\＃	
29	PF L2	0	x	x	X	x	\＃	
30	PF L3	0	0	X	X	x	\＃	
31	Hz	x	x	X	X	X	x	
32	Phase seq．	0	x	x	x	x	x	
33	Hours	x	x	x	x	x	x	
34	kWh（＋）	X	x	X	x	X	X	Total or by user
35	kvarh（ + ）	x	x	x	X	x	\＃	Total or by user
36	kWh（＋）	x	x	x	x	x	x	Partial or by tariff
37	kvarh（＋）	x	x	x	x	x	\＃	Partial or by tariff
38	kWh（－）	x	x	x	x	x	X	Total
39	kvarh（－）	X	x	X	x	X	\＃	Total
40	m^{3} Gas	X	x	x	x	x	X	Total
41	$\mathrm{m}^{3} \mathrm{Cold}_{2} \mathrm{O}$	x	x	x	x	x	x	Total
42	$\mathrm{m}^{3} \mathrm{Hot} \mathrm{H}_{2} \mathrm{O}$	x	x	x	x	x	x	Total
43	kWh H2O	X	X	X	X	X	X	Total

（x）＝available
（o）＝not available（zero indication on the display）
（\＃）＝not available（the relevant page is not displayed）
（1）＝max．value with data storage
（2）＝not available with the＂DP＂option

日煬國際事業股份有限公司 JD Auspice Co．，Ltd．

Display pages

Sel． pos．	No	1st variable （1st line）	2nd variable （2nd line）	3rd variable （3rd line）	Note	Applications							
						A	B	C	D	E	F	G	H
	1	Phase seq．	VLN sys	Hz		7	7	7		7	7	7	7
	2	Phase seq．	VLL sys	Hz							x	x	x
	3	Total kWh（＋）	W sys dmd	W sys dmd max		x	x	x		x	x	x	x
	4	kWh（＋）	A dmd max	（text）＂PArt＂	＂PArt＂＝Partial kWh（＋）						x	X	x
	5	Total kvarh（＋）	VA sys dmd	VA sys dmd max			7	7			7	7	7
	6	kvarh（＋）	VA sys	（text）＂PArt＂	＂PArt＂＝Partial kvarh（＋）						7	7	7
	7	Totalizer 1 （2）	W sys	（text）（3）	（1）			x			X	x	X
	8	Totalizer 2 （2）	W sys	（text）（3）	（1）			x			x	X	X
	9	Totalizer 3 （2）	W sys	（text）（3）	（1）			x			X	x	x
	10	kWh（＋）	t1 tariff（4）	W sys dmd	（1）digital input enabled			x			X	X	X
	11	kWh（＋）	t2 tariff（4）	W sys dmd	（1）digital input enabled			x			X	x	x
	12	kWh（＋）	t3 tariff（4）	W sys dmd	（1）digital input enabled			5			5	5	5
	13	kWh（＋）	t4 tariff（4）	W sys dmd	（1）digital input enebled			5			5	5	5
	14	kvarh（＋）	t1 tariff（4）	W sys dmd	（1）digital input enabled			7			7	7	7
	15	kvarh（＋）	t2 tariff（4）	W sys dmd	（1）digital input enabled			7			7	7	7
	16	kvarh（＋）	t3 tariff（4）	W sys dmd	（1）digital input enabled			5，7			5，7	5，7	5，7
	17	kvarh（＋）	t4 tariff（4）	W sys dmd	（1）digital input enabled			5，7			5，7	5，7	5，7
	18	kWh（＋）X	W X	User X	（1）specific function enabled				X				
	19	kWh（＋）Y	W Y	User Y	（1）specific function enabled				X				
	20	kWh（＋）Z	W Z	User Z	（1）specific function enabled				X				
	21	Total kvarh（－）	VA sys dmd	VA sys dmd max							7		7
	22	Total kWh（－）	W sys dmd	W sys dmd max						x	X		x
	23	Hours	W sys	PF sys						X	x	x	x
	24	Hours	var sys	PF sys						7	7	7	7
	25	var L1	var L2	var L3								7	7
	26	VA L1	VA L2	VA L3								7	7
	27	PF L1	PF L2	PF L3								7	7
	28	W L1	W L2	W L3						7		7	7
	29	A L1	A L2	A L3						X		x	X
	30	V L1－2	V L2－3	V L3－1								6	6
	31	V L1	V L2	V L3			7		7	7		7	7
0		ctor position w	ch can be linke	to any of the va	rable combinations listed abo	（	，	om					
1		ctor position w	ch can be linke	to any of the va	iable combinations listed abov	（	o．fr	om	to				
2	Sel	ctor position w	ch can be linke	to any of the va	riable combinations listed abo	（	o．fr	om	to				
3	$\begin{aligned} & \text { Self } \\ & \text { In th } \end{aligned}$	ctor position w is position the	ch can be linke nt LED blinks	to any of the va roportionally to	riable combinations listed abo e reactive energy（kvarh）being	$\mathrm{e}(\mathrm{~N}$		om red					

（1）The page is available according to the enabled measurement．
（2）m^{3} Gas，m^{3} Water，kWh remote heating．
（3）Hot and Cold（water），GAS．
（4）The active tariff is displayed with an＂A＂before the＂t1－t2－t3－t4＂symbols．
（5）These pages are not available in case of Dupline system．
（6）Pages not available in case of 1－phase sysem（1P selection）．
（7）Pages not available in case of 3－phase unbalanced system（3P selection）．
Note：in case of alarm the whole display blinks．The blinking stops when either the selector or the joystick are used．The display starts to blink again after 60 seconds of the last command being used．There is a time－out of 60 s that brings the scrolled page to the default one（selectable according to the table given above）．

Additional available information on the display

Type	1st line	2nd line	3rd line
Meter information	Firmware revision	YEAr（text）	Year of production
Meter information	PuLSE（text）	LEd（text）	Numb．of kWh per pulse
Meter information	System（1－2－3－phase）	Connection（2－3－4－wire）	dmd（time）
Meter information	VT／PT ratio		
Meter information（AV5－6）	Ct rAtio（text）	$1.0 \ldots 60.0 \mathrm{k}$	
Meter information（AV5－6）	UT rAtio（text）	$1.0 \ldots 6.0 \mathrm{k}$	
In case of communication port	SEriAL（text）	Address number	RS485 status（RX－TX）
In case of Dupline port	Dupline（text）or EM24（text）	OK ．．．err	

List of selectable applications

	Description	Notes
A	Basic domestic	Mainly energy metering
\mathbf{B}	Shopping centres	Mainly energy metering
\mathbf{C}	Advanced domestic	Mainly energy metering（total and based on tariff），gas and water metering
\mathbf{D}	Multi domestic（also camping and marinas）	Mainly energy metering（3 by single phase）
E	Solar	Energy meter with some basic power analyzer functions
F	Industrial	Mainly energy metering
G	Advanced industrial	Energy metering and power analysis
H	Advanced industrial for power generation	Complete energy metering and power analysis

Insulation between inputs and outputs

	Measuring Inputs	Relay outputs	Open collector outputs	Comm．port and digital inputs	Dupline	Self power supply	Auxiliary power supply
Measuring Inputs	-	4 kV	4 kV	4 kV	4 kV	0 kV	4 kV
Relay outputs	4 kV	-	-	-	-	4 kV	4 kV
Open collector outputs	4 kV	-	-	-	-	4 kV	4 kV
Comm．port and digital inputs	4 kV	-	-	-	-	4 kV	4 kV
Dupline	4 kV	-	-	-	-	4 kV	4 kV
Self power supply	0 kV	4 kV	4 kV	4 kV	4 kV	-	-
Aux．power supply	4 kV	-	-				

NOTE：all the models with auxiliary power supply have，mandatorily，to be connected to external current transformers because the isolation among the current inputs is just functional（100VAC）．

Tamper proof accessory kit

The＂tamper proof＂kit is available with the＂P＂option（two screw protection covers）．

The instrument can be sealed in three points：
－Upper cover；
－Lower cover；
－Front selector（to lock the instrument programming）；

（65A）System type selection：2P

（65A）System type selection：3P．n

（65A）System type selection：1P

（65A）System type selection：3P

（10A）System type selection：3P．n

Wiring diagrams

（10A）System type selection：3P．n

（10A）System type selection：3P． 1

（10A）System type selection：2P

（10A）System type selection：1P

Wiring diagrams
（10A）System type selection：1P

Power supply wiring diagrams（auxiliary power supply）

24 to 48VAC／DC（＂L＂option）

Open collector and relay outputs wiring diagrams

[^0]Digitala inputs，RS485 and Dupline ports wiring diagrams

Front panel description

1．Joystick
To program the configuration parameters and scroll the variables on the display．
2．LED
Red LED blinking proportional to the energy being measured．
3．Display
LCD－type with alphanumeric indications to：
－display configuration parameters；
－display all the measured variables．
4．Selector
To select the desired display pages and to lock the programming．
5．Connections
Screw terminal blocks for instrument wiring．

Dimensions

[^0]: The load resistances（ RC ）must be designed so that the close contact current is lower than 100 mA ；the VDC voltage must be lower than or equal to 30VDC．

